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Abstract. There has been a lot of inreresf in genenlizing orthodox quantum mechanics to 
include POV measures as observables, namely as unsharp obsemahles. Such POV measures are 
related to symmetric operators. The present paper examines how symmetric operators arise and 
how they can represent observables. 

1. Introduction 

In orthodox quantum theory a measured value of an observable is generally not associated 
with any spatial location. Take the case of the momentum. A measured value of the 
momentum is associated with the momentum operator j? which is not a localized quantity. 
There have been attempts to introduce numerical values of observables which are localized. 
One approach due to Wigner [l] is to define a pseudo-distribution function on the classical 
phase space in order to attribute the expectation value of a quantum observable as an average 
value of a corresponding classical observable over the pseudo-distribution function. Bohm 
[Z], on the other hand, introduced a notion of momentum values which could be assigned 
to a particle simultaneously with an exact position. Both these approaches encounter some 
well known difficulties. Recently Wan and Sumner [3] have introduced the concept of local 
values which can overcome many of the difficulties inherent in the approaches of Wigner 
and of Bohm. The idea is as follows. For simplicity we shall consider the case of ayantum 
particle in one spatial dimension; the associated Hilbert space is Lz(R). Let S(A) be the 
spechum of the self-adjoint operator 2 The spectrum of the position operator F is the real 
line_to be denoted by R. With each observable A we associate a generalized phase space 
r(A) defined to be 

r(Z) = s(X) x SO = s(Z) x B. 
By y we shall denote a region of r of the form A x 3.  where A and J are intervals of S(Z) 
and B respectively. An example is the phase space r(p3 = S ( 3  x S@ = B x R. Let 
Q be the given (normalized) state ofthe particle. Then for each bounded observable Â  we 
can associate a numerical value p(A, $; y )  to any bounded region y of the (generalized) 
phasezpace r(2) in such a way that the usual quantum eTectation value (QlZ$) is a sum 
of p ( A ,  Q; yn) over a partition [ y * }  of the e a s e  space F ( A ) .  In fact p(2 ,Q;  y,J generags 
a signed measure on r(A) and we call @(A,  Q; yn) a local value in the phase space r(A). 
0305-4470/95/08U79+15$l9.S0 @ 1995 IOP Publishing Ltd 2319 



2380 K K  Wan etal 

These local values have a direct and well defined meaning within orthodox quantum 
mechanics, i.e. they are the expectation value of the observable corresponding to the self- 
adjoint operator 

G ( A , Z  y") = i[z(A ;̂ An)%E Jn) + E c  J.)AE(A; A")} 

where E(A;  .), Ec ,) are the spectral measures of Â  and Z respectively. Explicitly we 
have 

A -  -0 

- A  

--I ~(2 .  4; v.) = ( W ( A .  x ;  d@). 
This expression introduces an interesting class of operators. To be precise let 

&, = G ( A . x ; W x J ) = f ( ~ ( ~ J ) A ^ + A ~ ( ~ J ) ) .  - - ^  

We shall call xr, semilocal operators in contrast to local operators [4] of the form 

x, = E( 2; J )  A T (  2; J )  . 
Since in L2(R) we have E ( 2  J )  = x,. the characteristic function of J on R, we have 

xs, = f I X , A ^ +  X X , )  

Â , = X , A X ,  ' 

and - 
Given any partition [ J n )  of the spatial space B we have a local value (@I& @) associated 
with each spatial region J,, such that the quantum expectation value is the sum of these 
local values, i.e. 

It is easily checked that generally the expectation value (@IT$) cannot be a sum of 
expectation values of local observables in view of the non-local nature of quantum 
mechanics. 

If xis bounded and self-adjoint then both &, and x, are self-adjoint; if A  ̂ is unbounded 
then & and Â, are generally not self-adjoint. Take the specific case of the momentum 
p = -W dldx in L*(R). The corresponding semilocal and local operators are 

4, = G(F,Z R x J )  = $ix,F+ F X , l  
and 

E = X , F X ,  
respectively. Both of these operators are symmetric and they each possess a one-parameter 
family of self-adjoint extensions (appendix A). At first sight this may cause difficulties. In 
fact the contrary is the case. This mathematical complication leads to interesting physical 
results. There has been a lot of interest in generalizing quantum mechanics to include 
positive-operator-valued (my) measures as observables of which the projector-valued (PV) 
measures are a special case [%lo]. There are two main arguments for this. The first one 
is based on the idea that every measuring device (MD) is imperfect in that it has a finite 
resolution 6 [I l l ,  i.e. the value A registered by the MD is a nominal value signifying only 
that the measured value lies in the range [A - 46, h + $1. Generally we should describe 
the resolution of an MD probabilistically. For example, we could assume a probability 
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density function f ( I )  such that the probability of the measured value lying in the interval 
6 = (61 ,  b2] is given by 

A -  

aa(z ,@;f ,b)  =/19)(91E(A;b+h)g)d . i  

= (91mff; b)b) 
where 

b)g = / E(.& 6 + I)@ f ( h )  dh 

A -  

and b + h denotes (61 + I, 62  + h]. It turns out that F(A,; b) ,  for a suitably chosen f ( h ) ,  
is a POV measure rather than a PV measure. 

The second argument is to do with the situation that many actual measurement 
interactions do not lead to a precise range of values, the conventional Stern-Gerlach 
experiment for spin measurement is often cited as a paradigm of this situation. 
Mathematically this is described by a POV measure [12]. 

In view of such a generalization, it has subsequently been proposed [6] that the notion of 
an observable be extended from a self-adjoint operator to an arbitrary symmetric operator. 
In the following section we shall examine the inclusion of symmetric operators for the 
representation of quantum observables from a different angle. Some relevant technical 
results relating Pov measures and symmetric operators are given in appendix B. 

2. Maximal symmetric operators as observables 

2.1. Probability distribution functions and spectral functions of symmetric operators 

A seemingly naive question arises as to what is an observable. We shall not be interested 
in a philosophical discussion of all this. Instead we shall first investigate the minimum 
requirements for a mathematical description of an observable. In orthodox quantum_ 
mechanics the m-athematical description of an observable A is a self-adjoint operator A 
with domain D ( A )  in an appropriate Hilbert space li; an observable A which together with 
a state, i.e. a unit vector g E ’D(& gives us three things: 

(i) A unique probability distribution function F$ by F$Q) (gIB(A;  A)+) for the values 

(ii) The expectation value of the observable 

^ ^  

A of the observable. 

&(F$)=/IdF,,(I)= (@&5). 

(iii) A finite variance 

V ( F g ) =  / (A-&(A,@)}’  dF$(h) =/A2dFi(A)-&(F$)2 

= l l m  - (dI&v 
Notice that all these three quantities are uniquely determined by the probability 

distribution function (PDF) F$ which is, in turn, uniquely fixed by the operator Â  
and the state $, and is entirely independent of how the measurement is carried out. 
The requirement for finite variances is obvious otherwise the expectation values become 
physically meaningless. Moreover, we have not defined the variance as (gI(A - ~ 5 ( F $ ) ) ~ q 5 )  
as is traditionally done since this would require g to be in the domain of 8. 
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In the orthodox theory each observable A generates a family M A  of PDFs, one for each 
unit vector q5 E W through the spectral function A) of the associated self-adjoint 
operator A? In other words MA is generated by an orthogonal resolution of the identity or 
its equivalent Pv measure. Moregenerally, a family M of PDFs is generated by ageneralized 
resolution of the identity (GRI) F(A) (appendix B). From now on we shall only consider 
PDFs generated by GRIs. Note that although a GRI gives rise to a family of PDFs there is no 
guarantee that any of the PDFs would lead to finite variances. We shall return to this crucial 
point later. 

A natural question arising from all of this is whether one can define an observable 
directly in terms of its association with an appropriate family of PDFS. We shall answer in 
the affirmative by realising that an observable corresponds to a family of PDFs of values 
obtained by a certain measurement process which leads to finite expectation values and 
variances. 
Defrnifion I. A set M = {F+ : Q E W )  of probability disnibution functions Fm. one for each 
unit vector @ in E,  is called a family of probability distribution functions on the Hilbert 
space 1-1. If there exists a linear manifold 'D dense in 'H such that VB E 'D, 

&(F+) = /" hdF+(A) < 00 V(F4)  = {A - &(Fm)}' dF+(A) < 00 s 
then M is said to have finite expectation values and variances on D and this is denoted by 
WD). 

As will be obvious presently, families M(D), M'(V), . . . of PDFs with the same linear 
manifolds on which they give the same expectation values are related to the same observable. 
The difference in the variances arises from the imperfections of non-ideal measuring devices. 
R e  family M(D) with the minimum variances corresponds to measurements made with 
ideal measuring devices. 

To formalize this we shall introduce the notion of a maximal family of PDFs on 'H. 
Defrnition 2. A family M ( D )  of probability distribution functions F+ on a Hilbert space 'H 
is called a maximal family of probability distribution functions on the Hilbert space H if 
given any other family M'(V) of probability distribution functions F i  on 'H with the same 
expectation values on D, i.e. 

E( F;) = E( Fm) Vq5 E 'D 
we have either 

F i = F +  V @ E V  

or 

V(F$ > V(F+) VQ E 'D. 

Note that the notation M('D) automatically includes the linear manifold V dense in 'H on 
which expectation values and variances exist. 
Lemma I .  Let p(h) be a GRI for the Hilbert space 'H wcch generates a family M ( D )  of 
PDFs Fi (A)  on E. Then there exists a symmetric operator A' in 'H with domain 'D such that 

/ A d r ( B l a ( ~ ) @ )  = (4124) W E D  

and 
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By a theorem of Naimark [I31 there is an orthogonal resolution of the identity Proof: 
E+@) for a Hilbert space H+ which contains H as a subspace such that 

^ ^  F(A) = P+E+(A)p+ where p+ is the projector from H+ onto 7-1 . 

/Adi(@IF@)@) =/Adi(@lE+(A)@)+ W E D  

We have 

where (.I.)+ signifies a scalar product in 71+. Let x+ be the self-adloint operator in Ht 
with E+@) as its spectral function. Clearly D lies in the domain of A+ since 

It follows that 
A ^  

/Adi(@lF(A)@) = (@IT+@)+ = @+@lA+P+@)+ 
^ A A  A ^ ^  

= (@IP+A+p+@)+= (@IP+A+f'+@). 
^ ^ ^  

Introduce the operator 6 in H defined on the domain D by ,? = P+A+P+. Then 6 is 
symmetric in H and satislies the conditions of the first part of the lemma. 

Next we have, on D, 

/ k2di(@lpQ)@) = /k'dA(@lE+(~)@)+ 
A ^  ^ A  

= (Â+&+@)+ = (A+P+@IA+P+@J+ 
> (P+A+P+@IP+A+P+@)+ = ( A  41.4 t) 3 3  ^ ^ ^  ^ ^ ^  

* /*'di(@Ip(A)@) 2 I lA@lI 3 2  . 

For more discussions see 16, E]. 
Theorem 1. Maximal families of probability distribution functions on a Hilbert space H 
correspond one-to-one to maximal symmetric operators in 'H and that each yx-ha' family 
of probability distribution functions is generated by the spectral function F(A;  A) of the 
corresponding maximal symmetric operator Â  by 

A ^  

F+?(A) = (@IF(A; A)@). 

Proof: First, a maximal symmetric operator is defined to be a symmetric operator which has 
no proper symmetric extension; a self-adjoint operator is therefore a maximal symmetric 
operator although the converse is generally false [14]. 

A family M(D) of PDFs F+ on 'FI generated by the spectral function F(A; A) of a 
pximal  symmetric operator Â  in H with domain D is clearly a maximal family. Since if 
F' is a OR1 which generates a family M'(D) of PDFs F' such that &(F$ = &(FQ) V@ E D 
then, by lemma 1, there exists a symmetric operator A' with domain D such that 

^ A  

-4 

and since (@1&5) = &(FQ) = E(Fi)  = (@I,?@) then we have [15] 

,?@=Z@ V @ € D .  
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By lemma I we have, on D, 

/hz&(@4PW@) 3 llT~llz = Il~411z * V(F$ 3 V ( F d  

Equality in the above expressiofs holds only if F ( A ;  2) = ?(A), this is because T'(2) 
will then be a spectral function of A, but a maximal symmetric operator possesses a unique 
spectral function. It follows that the spectral function of a maximal symmetric operator 
generates a maximal family of PDFS. 

Next let M'('D) be a maximal family of PDFs on E, and let ?(h) be the GRI which 
generates M'(D). The associated symmetric operator 2 (lemma 1) possesses at least 
one spectral function ?'(A) which, in turn, generates a new family hI"('D) of PDFs with 
&(F$ = E(F$ on D. We have, by lemma 1, 

^ ^  

+ V(FJ 2 V(F$.  

This is a contradiction unless ?(A) = p(A). It follows that ?(A) has to be the spectral 
function of 2 and moreover, 2 cannot admit two distinct spectral functions, i.e. 2 is 
maximal symmetric. 

For more discussion of maximal symmetric operators see appendix B. 

2.2. Concept of observables 

Intuitively an observable is a property of a physical system which can manifest itself 
quantitatively in the form of numerical values when the system interacts with a certain 
other system; the other system is the measuring device, the values known as measured 
values, and the interaction as a measuring interaction or process. Generally even when the 
system is in a specific state these numerical values occur in a probabilistic manner. An 
observable is therefore characterizable by a suitable set of PDFs of these measured values 
with different PDFS corresponding to different states. Here measuring devices are assumed 
ideal with perfect resolution. This concept leads us to the following 

Mathematical description ofobsemables. An observable of a physical system is described 
uniquely by a maximal family of PDFs on a Hilbert space with the different PDFs 
corresponding to different states of the system. In other words an observable determines 
and is determined by a maximal family of PDFs. 

The following results follow immediately from the preceding theorem 

Corollary 1. An observable A defines and is defined by a maximal symmetric operator Â  
with domain 'D, and the corresponding maximal family M(D) of PDFs F$ is generated 
by the spectral function F(A;  h) of the operator x. The resulting expectation values and 
variances are given respectively in terms of Â  by 

&(F$)=(@lA^t$) and V ( F ~ ) = I I ~ ~ I I Z - & ( F ~ ) Z .  

For brevity we shall simply call Â  the observable, Here we have a generalization of 
orthodox quantum mechanics by extending the set of observables beyond the set of self- 
adjoint operators. It is easy to see that a maximal symmetric operator does resemble a 
self-adjoint operator in possessing a unique spectral function which serves to generate a 

^ ^  
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unique maximal family of PDFs with expectation values and variances directly calculable 
using the operators in the same expressions. 

We should point out that the above notion of observables is far more restrictive than the 
statement, quite commonly adopted [5,7,10,16], that an observable is defined and identified 
with a POV measure. A general POV measure does not generate a maximal family of PDFs. 
It is well known that there are even POV measures whose associated PDFS admit no finite 
variance for any state vector [ 131; this would render the expectation values quite meaningless 
as mean values. So, we do not consider an arbitrary pov matsure as a description of an 
observable and we only admit Pov measures associated with maximal symmetric operators 
as representation of observables. Finally we should mention that it is highly desirable 
to have a single operator to represent an observable as we have in the form of maximal 
symmetric operators. This would facilitate, for example, the description of interactions 
directly involving that observable. In contrast, a general POV measure does not correspond 
to a unique symmetric operator [ 131. 

A further comment on symmetric operators is in order here. A symmetric operator, 
if not maximal, does not determine a unique spectral function; therefore it  does not b_y 
itself represent an observable in our present theory. However, a symmetric operator A, 
Coes generate observables in the form of its maximal symmetric exten_sions. Moreover, 
A, can be regarded as the restriction to aiarticular domain Do = DLA,) of observables 
corresponding to its maximal extensions A in that for states in D(AJ  we can use the 
symmetric operator directly to evaluate expectation values and variances, namely we have 

The different maximal extensions show themselves in different probability distributions 
since they possess distinct spectral functions. 

2.3. Applications 

To justify the extension of orthodox theory to include maximal symmettic operators we 
must illustrate what kind of new observables are included and what are the physical and 
mathematical origin of these new observables. We shall do this by studying a large class 
of quantities excluded in the orthodox theory. Physically many of the most important 
quantum observables originate from classical mechanics. A classical observable is a function 
A = A ( p ,  x )  on the classical phase space re which is coordinated by the canonical pair 
( p , x )  of mo_mentum and coordinate variables p and x .  The quantum counterpart, as 
an operator A in an appropriate Hilbert space, is to be established through a process of 
quantization. More often than not, even the most sophisticated quantization schemes such 
as geometric quantization fail on at least two counts: first they fail to produce self-adjoint 
operators, and secondly even when they do they fail to produce a unique self-adjoint operator 
to correspond to a given classical observable A = A ( p ,  x ) .  Within the context of orthodox 
theory one then takes the view that these classical observables are not quantizable and hence 
have no quantum counterpart 

Consider 
the classical radial momentum pr  in spherical polar coordinates. It is well known that 
the canonically quantized pr is represented by a maximal symmetric operator, j?,, which 
is not self-adjoint (appendix C). Geometric quantization also fails in  this respect [17]. 
Orthodox theory will therefore not admit a quantum radial momentum observable [ 181. The 
question then arises as to why we should not have a quantum radial momentum observable, 
especially considering the fact that p: actually appears in the Hamiltonian in spherical 

Our first example concerns the lack of self-adjointness on quantization. 
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polar coordinates. If self-adjointness is insisted upon one has to go through a procedure 
of localization to obtain local radial momentum observables [ 191. However, our present 
generalization will accept as an observable in its own right. The (generalized) spectral 
function of p7 in L2(E3, dy) = L*(R+, r’dr) Q Lz($, sine dfldp) is shown in appendix 
C to be given by 

K K Wan et ai 

where 

from which we can work out the PDFS explicitly. 
The second example is on the non-uniqueness on quantization. Consider the momentum 

p of a particle confined to an interval J of R by an infinite square potential well., There have 
been a number of discussions on what appears to be a rather simple matter [20, 211. The 
problem arises because the operator P Y J )  = -ihd/dx in the Hilbert space L2(J) obtained 
by formally quantizing the classical mOmenNm p is only symmetric and not essentially 
self-adjoint (appendix A). Its deficiency indices are (1,l)  and P o ( J )  therefore possesses a 
one-parameter family of self-adjoint extentions a(J). B E R. In our present theory F O ( J )  
itself is not an observable. However, each self-adjoint extension ? ( J )  is an observable. 
As to which of these extensions should correspond to the classical momentum p is a matter 
to be determined by other physical considerations. This is not at all an attempt to wiggle out 
of thi? non-uniqueness problem in a hand waving manner. In a recent paper [22] operators 
like P e ( J )  are utilized to model superconducting ring devices with a Josephson junction; 
the parameter 0 is seen there to be determined by the externally applied magnetic field. 

Thirdly, we have the examples of local and semilocal operators described in the 
Introduction. These operators arc symmetric in general but they will have maximal 
symmetric extensions which can serve as observables. 

3. Imperfect measuring devices, approximate and related observables 

3.1. lmperfec! measuring devices 

The discussion in the preceding section assumes the existence of ideal measuring devices 
capable of recording results without any inherent inaccuracy. Two cases present themselves 
when imperfect measuring devices are considered. The first case is when inaccuracy is due 
to simple instrument errors, i.e. every instrument would have a certain finite resolution 6 
so that it is unable to distinguish values differing by less than 6 and any recorded value 
produced in a single measurement act is only a nominal value subject to an inaccuracy 
of 6. There is a well known procedure to deal with this as mentioned earlier, leading to the 
concept of approximate or unsharp observables [5,16,23]. The second case is due to the 
inability to distinguish sufficiently closely related observables. We shall consider these two 
cases in turn. 

3.2. Inaccuracy and approximate observables 

Mathematically this situation can be generally described by introducing a new probability 
distribution function together with its associated probability density function f in the 
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following fashion: 
01 

F?(h) = f ( A  -h')F$(A')dh'. 1, 
Here the function f is characteristic of a particular MD and it represents the extent of 
inaccuracy or unsharpness of the nominal value recorded; f (A) is assumed to be normalized, 
i.e. J_",f(h)dh = I ,  symmetric, i.e. f ( h )  = f(-A) peaking at A = 0 and satisfy 
V(f) c W. Such an f ( h )  is referred to as the confidencefunction of the MD used. We 
then have 
(i) The expectation value 

E(@) = /AdF?(A). 

V(F+ ) =  (A-C(F+ A! )) 2 d ~ + ? ( A ) = / A 2 d ~ ~ ( h ) - & ( F + ? ) Z .  

(ii) A finite variance 

-s 
Note that F,A' # F t ,  and V(F+?) z V($),  hut E ( F , )  = &(F$). In other words 
inaccuracy of the measuring device leads to an apparent change of the probability distribution 
function which results in an increase in the variance. However, the above choice of f means 
that the average value of the observable is unaffected. 

One can formalize the imperfection in a measuring process by utilizing the notion of 
approximate observable mentioned earlier. An approximate observable A, to the observable 
A corresponds to a family of PDFs 

MA, = [ F? : 4 E 'D(z)] 
generated from MA by a confidence function f. We can clearly see the motivation for the 
definition of a maximal family of PDFs here. All these families MA, of PDFs possess the 
same common linear manifold 13 on which they give the same expectation values as the 
original observable A.  The original observable measured by perfect measuring devices leads 
to the smallest variance in every state in 13. In other words MA, is not a maximal family 
of PDFs and it therefore does not correspond to a maximal symmetric operator. It follows 
that an approximate observable is not an observable in our theory; it is not represented by 
an operator from which the expectation values and the variances can be calculated using 
the standard expressions. 

3.3. Significance or otherwise of upproximote observables 

The significance or otherwise of approximate observables depends on the nature of the 
imperfection of measuring devices. Even in the realm of classical physics a measuring 
device, say a velocity measuring device, would have inherent inaccuracy. The situation 
is even more obvious in classical statistical physics where even the physical systems 
themselves are realisable only approximately. However, the fundamental issue is not that 
of the existence of inaccuracy but that of whether the inaccuracy can be arbitrarily reduced. 
In classical physics one assumes the possibility of arbitrary reduction of inaccuracy in any 
measurement. It follows that approximate observables, while a useful concept to have 
in the theory, are not fundamental in classical physics in general. A similar analysis 
can he used in quantum mechanics. Model theories have been established recently [24] 
in which the measurement of a quantum observable, including spin, can, in principle, 
be reduced to local position measurements by a process of spectral separation, i.e. by 
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channelling various spectral components into spatially disjoint regions and that this enables 
a measurement to be achieved with arbitrary accuracy. Hence, in contrast to the inclusion 
of observables represented by maximal symmetric operators, we regard the inclusion of 
approximate observables or their associated pov measures as a useful but less fundamental 
generalization of orthodox quantum mechanics. 

Note that we are considering non-relativistic quantum mechanics here. Relativistic 
theory may require separate considerations [U]. 

3.4. Inaccuracy and related families of obsewables 

The fact that a measuring device has a finite resolution also means that it may well be 
impossible to distinguish a related set of maximal-symmetric operators. This shows up 
most clearly in the case of a symmetric operator A' with domain D(Ao) which admits a 
family of self-adjoint extensions 8. Firstly for a state 4 E 'D(A^o) all these extensions 2 
give the same expectation value and variance. To pick out a particular 8 we may, say, 
try to obtain its eigenvalues by measurement since these eigenvalues may well be unique 
to 8. But this is generally impossible with a measuring device of finite resolution since the 
eigenvalues of .?' may lie too close to that of 2. This situation is best illustrated with an 
example. Recall our earlier example of a free particle confined to the interval J = (U, b)  of 
R by an infinite square potential well. We obtain (appendix A) a family of related momentum 
observables corresponding to the set of self-adjoint operators (P(J) : 0 E (-n, r]).  We 
call this a closely related family of observables because their respective discrete spectra 
could be arbitrarily close to each other. 

Suppose one sets out to try to measure a particular member of this family p(J) with 
an imperfect measuring device one would not be able to distinguish this chosen observable 
P^B(J) from a neighbouring one, i.e. from P * ' ( J )  where 8' is sufficiently close to e. ' b o  
confidence functions have to be introduced to establish PDFs for the distributions of nominal 
values recorded by the measuring device. First, we have a confidence function f for the 
usual uncertainty incurred assuming we know precisely which observable is being measured. 
Secondly, we must have a new confidence function g to account for the uncertainty as to 
which observable, e.g. p(J) or F(J), is being measured. So, the required distribution 
function could be written as 

K K Wan et a1 

m a 
F: ("(g. f ;  A) = [I dO'g(0 - 6") /- dh' f ( h  - h ' ) F p ( A ' )  

where 

Fr(" (h )  = @IE(P"(J); A)@). 
We can recover the orthodox results in terms of perfect measuring device by letting the two 
confidence functions tend to the Dirac delta function, i.e. g(6) + S(B) and f ( h )  + 8(h). 

4. Concludfng remarks 

Existing generalizations of orthodox quantum mechanics which cater for non-ideal 
measurements do so by randomizing the probability distributions generated by the spectral 
functions of self-adjoint operators. The resulting randomized spectral functions are GRls. 
Such randomizing inevitably increases the variance of a distribution, but the mean remains 
(by choice) unaffected. This leads to a notion of approximate observables. 

Reversing this scenario, we have determined which GRIs can be regarded as observables 
in the context of ideal measurement and which should be considered as approximate 
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observables measured by means of inaccurate (non-ideal) apparatus. The former was found 
not to be just the set of spectral functions of self-adjoint operators as in the orthodox theory, 
but instead the lakger set of spectral functions of maximal symmetric operators, which, in 
general, are not projector-valued. 

Our generalization, which requires that an observable need only be represented by a 
maximal symmetric operator, has obvious implications for the entire matter of quantization 
as exemplified by the radial momentum observable. 
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Appendix A. On local and semilocal momentum operators and their self-adjoint 
extensions 

Let AC(R) denote the set of absolutely continuous functions in R and let J be the interval 
(a. b )  of R. For the operator E, we have 

D(E,)  = (4 E LZ(R)  : @ E AC(R), d@/dx E Lz@), @(a) = #(b) = 01 
and for @ E D(p?,,) 

The adjoint E is defined on the domain 

D ( t $ )  = {@ E L*@) : @ E AC(R), d@/dx E Lz(R)} 

and for @ E @ ( E )  

The proof follows that in [ 131. 

D(p^o(J)) = {# E L’(J) : 4 E A C ( J ) ,  d@/dx E L z ( J ) ,  @(a) = @ ( b )  = O } .  

This operator is symmetric with deficiency indices (I , ] ) .  It admits a one-parameter 
family of self-adjoint extensions p^B(J) = -iZld/dx on the domain 

D(P”(J)) = {@ E L2(J)  : @ E A C ( J ) .  d@/dx E L z ( J ) ,  @(a)  = e-”@(b). 0 E (-n, a ] ] .  

Next consider the operator p^o(J) = -ihd/dr in L 2 ( J )  on the domain 

The eigenfunctions of P ( J )  are 

with eigenvalues 
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Let @ J c )  be the zero operator on Lz(J"), where J c  = R - J .  
Then we have 

p7 = FY.0 @Ti(J') 3 E, 
A 

and so P," = P(J) @ @ J c )  constitutes a one parameter family of self-adjoint extensions 
for and Ey. 
Appendix B. On POV measures and symmetric operators 

Suppose we assign to each @ E 'H a probability distribution function (PDF), F&), on IR 
such that F&) = {@1&4), where %I) is a linear operator in 'HA Then clearly F(A) 
must be defined on 'H and thus be bounded. The other properties of F(h) are fixed by the 
requirement that F&) is a PDF for every 4 E 'H. 

la. F(m) = 1. 

3a. F(A + 0) = F(A) 
4a. F(A1) < F(Az )  wherever XI  < A*. 

the following: 

Ib. E((..) = 
2b. F_~-w) = 0, 
3b. E(A + 0): F(A) 
4b. F ( i 2 )  - F ( h l )  is a positive operator wherever A ,  4 Az. 

That lb, 2b and 3b hold in the strong operator topology is a corollary of the following: 

Lemma 2. If ITr) 
bounded operator A, i.e. 

A function F : B -+ R is a PDF on W if and only if [26]: 

21. F(-cx) = 0. 
VA E R. 

So, if F+(A) is a PDF on k for every 4 E 'H then la to 4a above, respectively, imply 

V i  E R. 

a sequence of bounded operators which converges ultraweakly to the 



Observables, m i m a 1  symmetric operators and POV measures 2391 

Thus 

For a sequence of type (b) we can apply the generalized Schwarz inequality to Â , - Â  and 
the desired result follows. See also [Z]. 

Clearly F(A) is a generalized resolution of the identity (GRI) for 'H [13]. 
Generalised resolutions of the identity @A) are isomorphic to POV m e a s m  dF(A) in 

the same way that the (standard) orthogonal resolutions of the identity are isomorphic to PV 
measures. - 

A GRI, F(A) ,  is called a generalized spectral function of a symmetric operator 3 if 

(91%) = Ad(@I%J@) ll?@llz = Sm Azd(@lF(A)@) 
-CO -m 

for all @ E 31 and all @ E D($. We can rewrite F(&) as F(2; A). We also call the POV 
measure associated with F(?; A) the pov measure of S. Note that 

We also write 
CO 

S = L_hdF(?;  A) .  

A symmetric operator possesses a unique spectral function if and only if it is 

Generally, if F(A) is a OR1 such that a dense set 2, exists on which 
maximal [13]. 

then F(A) defines a symmetric operator ?with domain D by 

Following Werner [28] we shall call ? the expectation operatorf F(A). This does not 
imply that F(A) is necessarily a spectral function of the operator S since we may have 

11~@l12 # /mA2d(@lF(V@) -m < 00 

It_follows that ? is of limit@ use since the variance cannot be calculated directly 
from S. As an example consider F&), the GRI defined by an approx&ate observable A,. 
The expectation operator of F f ( A )  tums out to be theoriginal operator A which has a unique 
spectral function wjich clearly cannot be yua l  to Fj(A);  it is clear that the variance cannot 
be obtained from A without reference to F f ( A )  (cf [7]). 

Finally we remark that since a probability distribution function F+ can be used to 
define a Lebesguedtieltjes measure 1291, denoted simply by dF4, there is a one-to-one 
correspondence between probability distribution functions and probability measures. We can 
therefore introduce the notion of a maximal family of probability measures in a Hilbert space 
31 as the family corresponding to a maximal family of probability distribution functions 
defined earlier. 
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Appendix C. On the radial momentum operator and its generalised spectral function 

In spherical polar coordinates, L2(R3. d r )  has the decomposition [30]: 

Let Tdenote the identity operator on Lz(Sz, sin8 dB dp), then the radial momentum operator 
F, - ih( l / r )@pr) r  is identified with the closure of the operator 6 8 I defined on 
D(P,) 8 L2(S2.  sin0 d0 dp) where 

D ( 6 ) =  @ E L2(R+,rzdr ) :@ E AC('R+),;,r@E Lz(W+,rzdr) and limrl@(r)l = O  

and for each @ E D(Fr) ,  

K K Wan et ai 

L2(R3,d7) = L2(W+,r2dr)8LZ(SZ,sin8dBd~).  

I I d  I 7-0 

where E is maximalsymmetric in LZ(F&+,r2dr) but not self-adjoint 1311. Note that E 
here corresponds to A;, k = 2, [31]. 

Next consider the operator P+ defined in Lz(P+. dr) on domain 

. d@+ P+@+ = -fi--. dr 
where p+ is also maximal symmetric but not self-adjoint [31]. There is a unitary map, 0, 
between L 2 @ + .  r2dr) and Lz(R+, dr) defined by 

and 
c@ = r@ E LZ(R+, dr) 

4.b 

V@ E L2(R+, r'dr) 

U-'@+ = - E Lz(R+, r'dr) V@+ E L2(R+, dr) 
r - 

Cleariy 

TJe_operator p+, being maximal symmetric, possesses a unique generalized sEectr_alfunction 
F( f+ ;  A). One can easily verify that the generalized spectral functioz for P,, F(P,; A), is 
?-'F(f+; A)c and that the generalized spectral function for Fr, F ( 6 ;  A), is then just 
p(6; A)$ ? We now-only need to find an explicit expression for p(6; A). 

Let E(?; A )  and E @  A) denote the respective (standard) spectral functions of the 
familiar position and momentum operators in Lz(R, dr), i.e. for each 4 E L2(@-, dr), 

and 

and f+ are unitarily equivalent, i.e. 
^ ^  ^^ E = u^-lP+cJ F+ = up,u-'. 

- -  

A)@W = x(--.Al(r)@(r) 

Now since L2(R, dr) 3 L2(R+, dr) and p̂  is a generalized self-adjoint extension of 
F+ [13], then for each @+ E L2@.+, dr) we have [6,131: 

^ ^  
WP+, M + ) ( r )  = x[cm(r)(@E i)@++)(r) 
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Thus 

V@ E L Z @ + , r 2 d r ) .  
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